On the Local Equatorial Characterization of Zonoids and Intersection Bodies
نویسندگان
چکیده
In this paper we show that there is no local equatorial characterization of zonoids in odd dimensions. This gives a negative answer to the conjecture posed by W. Weil in 1977 and shows that the local equatorial characterization of zonoids may be given only in even dimensions. In addition we prove a similar result for intersection bodies and show that there is no local characterization of these bodies.
منابع مشابه
Non-intersection Bodies All of Whose Central Sections Are Intersection Bodies
We construct symmetric convex bodies that are not intersection bodies, but all of their central hyperplane sections are intersection bodies. This result extends the studies by Weil in the case of zonoids and by Neyman in the case of subspaces of Lp.
متن کاملResearch Training Network “ Phenomena in High Dimension ” EDUCATIONAL WORKSHOP ON GEOMETRIC INEQUALITIES In honour of the 65 th birthday
S OF MAIN LECTURES Richard. J. GARDNER (Western Washington Univ.,U.S.A ) The dual Brunn-Minkowski theory and some of its inequalities As the title suggests, the focus of the talk is the dual Brunn-Minkowski theory, initiated by Erwin Lutwak in 1975, and developed since by him and others. First, an elementary introduction is provided to the basics, dual mixed volumes of star bodies, the dual Ale...
متن کاملVolume difference inequalities for the projection and intersection bodies
In this paper, we introduce a new concept of volumes difference function of the projection and intersection bodies. Following this, we establish the Minkowski and Brunn-Minkowski inequalities for volumes difference function of the projection and intersection bodies.
متن کاملA Characterization of Blaschke Addition
A characterization of Blaschke addition as a map between origin-symmetric convex bodies is established. This results from a new characterization of Minkowski addition as a map between origin-symmetric zonoids, combined with the use of Lévy-Prokhorov metrics. A full set of examples is provided that show the results are in a sense the best possible.
متن کاملOn the hyperplane conjecture for random convex sets
This seemingly innocuous question, considered two decades ago by Bourgain [3, 4], has not been answered yet. We refer the reader to, e.g., [2], [18] or [14] for partial results, history and for additional literature regarding this hyperplane conjecture. In particular, there are large classes of convex bodies for which an affirmative answer to the above question is known. These include unconditi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006